Choosing the lesser evil: trade-off between false discovery rate and non-discovery rate
نویسندگان
چکیده
The problem of multiple comparisons has become increasingly important in light of the significant increase in volume of data available to statisticians. The seminal work of Benjamini and Hochberg (1995) on the control of the false discovery rate (FDR) has brought forth an alternative way of measuring type I error rate that is often more relevant than the one based on the family-wise error rate. In this paper, we emphasize the importance of considering type II error rates in the context of multiple hypothesis testing. We propose a suitable quantity, the expected proportion of false negatives among the true alternative hypotheses, which we call non-discovery rate (NDR). We argue that NDR is a natural extension of the type II error rate of single hypothesis to multiple comparisons. The utility of NDR is emphasized through the trade-off between FDR and NDR, which is demonstrated using a few real and simulated examples. We also show analytically the equivalence between the FDR-adjusted p-value approach of Yekutieli and Benjamini (1999) and the q-value method of Storey (2002). This equivalence dissolves the dilemma encountered by many practitioners of choosing the “right” FDR controlling procedure.
منابع مشابه
The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملEmpirical Null and False Discovery Rate Inference for Exponential Families
In large scale multiple testing, the use of an empirical null distribution rather than the theoretical null distribution can be critical for correct inference. This paper proposes a “mode matching” method for fitting an empirical null when the theoretical null belongs to any exponential family. Based on the central matching method for z-scores, mode matching estimates the null density by fittin...
متن کاملEMPIRICAL NULL AND FALSE DISCOVERY RATE INFERENCE FOR EXPONENTIAL FAMILIES BY ARMIN SCHWARTZMAN1 Harvard School of Public Health and Dana-Farber Cancer Institute
In large scale multiple testing, the use of an empirical null distribution rather than the theoretical null distribution can be critical for correct inference. This paper proposes a “mode matching” method for fitting an empirical null when the theoretical null belongs to any exponential family. Based on the central matching method for z-scores, mode matching estimates the null density by fittin...
متن کاملOptimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips
Five strategies for pre-processing intensities from Illumina expression BeadChips are assessed from the point of view of precision and bias. The strategies include a popular variance stabilizing transformation and model-based background corrections that either use or ignore the control probes. Four calibration data sets are used to evaluate precision, bias and false discovery rate (FDR). The or...
متن کاملOptimal likelihood-ratio multiple testing with application to Alzheimer’s disease and questionable dementia
BACKGROUND Controlling the false discovery rate is important when testing multiple hypotheses. To enhance the detection capability of a false discovery rate control test, we applied the likelihood ratio-based multiple testing method in neuroimage data and compared the performance with the existing methods. METHODS We analysed the performance of the likelihood ratio-based false discovery rate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008